Tuning P450 Enzymes as Oxidation Catalysts
نویسنده
چکیده
The development of catalytic systems for the controlled oxidation of C−H bonds remains a highly sought-after goal in chemistry owing to the great utility of such transformation toward expediting the synthesis and functionalization of organic molecules. Cytochrome P450 monooxygenases are the catalysts of choice in the biological world for mediating the oxidation of sp and sp C−H bonds with a high degree of chemo-, regio-, and stereoselectivity and in a wide array of compounds of varying complexity. The efficiency of these enzymes, compared with chemical methods, to catalyze the insertion of oxygen into unactivated C−H bonds under mild reaction conditions has sparked interest among researchers toward investigating and exploiting P450s for a variety of synthetic applications. Realizing the synthetic potential of these enzymes, however, depends upon the availability of effective strategies to tune the reactivity of natural P450s to obtain viable oxidation catalysts for the desired transformation. This review describes recent efforts in this area involving the use of protein engineering, substrate engineering, guest/host activation, and functional screening strategies. The development of engineered P450s for drug metabolite production and emerging methodologies involving the integration of P450-catalyzed transformations in preparative-scale chemoenzymatic syntheses are also presented. Key challenges that need to be addressed to capitalize on P450 oxidation catalysis for chemical synthesis are discussed.
منابع مشابه
P450 fingerprinting method for rapid discovery of terpene hydroxylating P450 catalysts with diversified regioselectivity.
Engineered P450 enzymes constitute attractive catalysts for the selective oxidation of unactivated C-H bonds in complex molecules. A current bottleneck in the use of P450 catalysis for chemical synthesis is the time and effort required to identify the P450 variant(s) with the desired level of activity and selectivity. In this report, we describe a method to map the active site configuration of ...
متن کاملEnhancing the efficiency and regioselectivity of P450 oxidation catalysts by unnatural amino acid mutagenesis.
The development of effective strategies for modulating the reactivity and selectivity of cytochrome P450 enzymes represents a key step toward expediting the use of these biocatalysts for synthetic applications. We have investigated the potential of unnatural amino acid mutagenesis to aid efforts in this direction. Four unnatural amino acids with diverse aromatic side chains were incorporated at...
متن کاملNicotine 5'-oxidation and methyl oxidation by P450 2A enzymes.
In smokers, the primary pathway of nicotine metabolism is P450 2A6-catalyzed 5'-oxidation. The nicotine Delta(5'(1'))-iminium ion product of this reaction is further metabolized to cotinine by aldehyde oxidase. Previous investigators have reported kinetic parameters for cotinine formation using human liver cytosol as a source of aldehyde oxidase. Using [5-(3)H]nicotine and radioflow high-perfor...
متن کاملCytochrome P450 proteins and potential utilization in biodegradation.
The cytochrome P450 enzymes are major catalysts involved in the oxidations of xenobiotic chemicals in microorganisms as well as higher animals and plants. Because of their functional roles, they offer potential in biodegradation technology. A number of microbial P450s have already been characterized and offer advantages in terms of their high catalytic rates and facile expression in microorgani...
متن کاملCatalysts on Demand: Selective Oxidations by Laboratory-Evolved Cytochrome P450 BM3
Efficient catalysts for selective oxidation of C–H bonds using atmospheric oxygen are highly desirable to decrease the economic and environmental costs associated with conventional oxidation processes. We have used methods of directed evolution to generate variants of bacterial cytochrome P450 BM3 that catalyze hydroxylation and epoxidation of a wide range of nonnative substrates. This fatty ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012